天才一秒记住【快眼看书】地址:https://www.nekeye.com
“我就想着打电话来问问你,咱们也算是老熟人了。
但我知道你在忙波利尼亚克猜想,如果忙不过来的话,我再问问老顾。”
许青舟当然不会拒绝:“我这边没什么问题,您什么时候需要,我什么时候过来。”
“明天上午,9点吧。”
“好。”
挂断电话,许青舟长吐了口气,想什么来什么,前些天还想着要怎么蹭一蹭实验呢。
回到图书馆位子上,喝了口水,他的目光放到了猜想内容上:对所有自然数k,存在无穷多个素数对(p,p+2k)。
波利尼亚克猜想,也叫广义孪生素数猜想。
多了“广义”
两个字,证明或者证伪的难度直线上升。
就好像原本要在一片湖里捞针,现在突然把湖换成海,成了真正的大海捞针了。
许青舟眯着眼,注意力又回到孪生素数个数的推测上面。
这个地方,再进行修正,用π2(x)表示不过x的孪生素数个数.
想着,他提笔写下一排公式。
【π2(x)=#{p≤x:p+2isprime}】
按照这种方式的话,孪生素数猜想的充分必要条件就是π2(x)严格单调递增。
到这里,渐近公式就比较重要了。
【π2(x)kx1og2x。
】
接下来可以试着求出k的具体表达式。
通过拼凑,先让第(9)右侧的乘积能够变成收敛的量,也就是说要找到一个已知渐近展开的乘积∏3≤p≤xf(p)使得乘积∏p≥312pf(p)收敛。
最后,再利用对数函数的性质,就能把问题转化成证明表达式收敛。
想清楚,许青舟也不再浪费时间,开始动笔。
这意味着当n≤pz时,有:
【π2(pz,z)=∏.3≤p≤z(p2)=pz2∏3≤p≤z(12p)】
k的表达式:
【k=2∏p≥312p(11p)2=2∏p≥3[11(p1)2]】
到这里,许青舟就算完成了第一步,接下来,就是把曾经探究素数和孪生素数分布时用的核心方法进行提炼,得到证明波利尼亚克猜想的筛法的原始形式。
在此基础上进行完成,以期望得到一个全新的更加强劲的筛法。
按照曾经的习惯,许青舟还是先把这段时间所有的计算步骤全部过一遍,脑海中有了一个清晰和完整的脉络了,才开始思考要从哪里入手。
先,精简筛法,在孪生素数定理的筛法基础上,引入解析数论中的复分析、L函数等,以及组合数学、代数几何等领域的技巧,构造一个足够强大并且能够精准筛选素数的工具。
同时,还得开一个高效的算法来辅助计算,以便能快地处理大规模数据,提高筛法的效率和准确性。
这点恐怕还得用到算中心的算资源。
到这里,许青舟暂时把波利尼亚克猜想的资料收起来,调出还没看完的锂离子电池的论文,闷头算了两天,现在确实有点累。
过犹不及,一直闷头算下去容易陷入牛角尖,而且想证明一个猜想不是一朝一夕能完成的,还是要劳逸结合。
(本章完)
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!