快眼看书

第32章 无穷量级的萌芽下(第1页)

天才一秒记住【快眼看书】地址:https://www.nekeye.com

屋子里。

看着一脸懊恼的小牛,徐云的心中却不由充满了感慨:虽然这位的人品实在拉胯,但他的脑子实在是太顶了!

看看他提到的内容吧:微积分就不说了,还提到了法向量的概念、势能的概念、净力矩的概念以及小形变的假设的假设。

以上这几个概念有一个算一个,正式被以理论公开,最早都要在1807年之后。

这种150年到200年的思维跨度敢问谁能做到?诚然。

胡克提出来的问题其实很简单,简单到徐云第一时间想到的解法就接近了二十种,最快捷的方法只要立个非笛卡尔坐标系上个共变导数就能解决。

但别忘了,徐云的知识是通过后世学习得到的,那时候的基础理论已经被归纳的相当完善了。

就像掌握了可控核聚变的时代,闭着眼睛都能搞出个200的发动机。

但小牛呢?他属于在钻木取火的时代,目光却看到了内燃机的十六烷值计算式那么离谱!

想到这,徐云心中莫名有些想笑:他曾经写过一本小说,结果别说牛顿了,连麦克斯韦都被一些评论diss成了‘查了一下,不过一个方程组而已’。

随后他深吸一口气,将心思转回了现场:“牛顿先生,您的这个思路我非常认可,但是需要用到的未知数学工具有些多,以目前数学界的研究进度似乎有点乏力”

小牛点点头,大方的承认了这一点:“没错,但除此以外,就必须要用到你说的韩立展开了。”

说完小牛继续低下头,飞快的又列出了一行式子:v(r)=v(re)+v’(re)(r-e)+[v’’(re)2!](r-re)2+[v’’’(re)3!](r-re)3接着小牛在这行公式下划了一行线,皱眉道:“如果使用韩立展开的话,弹球在稳定位置附近的性质又该是什么?这应该是一个级数,但划分起来却又是一个问题。”

徐云抬头看了他一眼,说道:“牛顿先生,如果把稳定位置当成极小值来计算呢?我们假设有一个数学上的迫近姿态,也就是无限趋近于0?”

“无限趋近于0?”

不知为何,小牛的心中忽然冒出了一股有些古怪的情绪,就像是看到莉莎和别人挽着手从卧室里出来了一样。

不过很快他便将这股情绪抛之脑后,思索了一番道:“那不就是割圆法的道理吗?”

割圆法,也就是计算圆周率的早期思路,上过小学人的应该都知道这种方法。

它其实暗示了这样一种思想:两个量虽然有差距,但只要能使这个差距无限缩小,就可以认为两个量最终将会相等。

割圆法在这个时代已经算是一种被抛弃的数学工具,以徐云随口就能说出韩立展开的数学造诣,理论上不应该犯这种思想倒退的错误。

面对小牛的疑问,徐云轻轻摇了摇头,说道:“牛顿先生,您所说的概念是一个非级数的变量,但如果更近一步,把它理解成一个级数变量呢?甚至更近一步,把它视为超脱实数框架的常量呢?”

“趋近于0,级数变量?常量?”

听到徐云这番话,小牛整个人顿时愣住了。

无穷小概念,这是一个让无数大学摸鱼党挂在过树上的问题。

一般来说。

一个人从大学生到博士,对于无穷小的认识要经历三个阶段。

第一阶段跟第二阶段的无穷小都是变量,认识到第三阶段的时候,所有的无穷小都变成了常量,并且每个无穷小都对应着一个常数。

这些常数都不在实数的框架里面,都是由非标准分析模型的公理产生出来的。

第一个阶段是上大学学习数学分析或者高等数学的时候的认知,也就是无穷小是要多小有多小。

即正负无穷小的绝对值,小于任意给定的一个正实数。

第二阶段是学习非标准分析的时候,很多微积分公式引入了无穷小量,出现了序之类的概念。

第三阶段是认识数学模型论的时候,这时无穷小量可以变成常量。

本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

如遇章节错误,请点击报错(无需登陆)

新书推荐

我的人生可以无限模拟抗战从周卫国开始南北杂货梦回大明春命运守望者在异界开医院没有那么难吧巫界术士玄德全球迷雾求生斗罗之黄金巨猿九天神帝光明纪元混沌规则绝世邪神空战之王一切从宝芝林开始从大话西游开始打穿西游诸天谍影【快穿】满级祸水成了小可怜我真没想在过去的年代当学霸从伦敦开始的诡异剧场都市最强修真妖孽(超品教师)绝望教室剑卒过河修仙百艺